Tarea 1: Definición propia de Matematicas Discretas
1.-Las matemáticas discretas son un área de las matemáticas encargadas del estudio de los conjuntos discretos: finitos o infinitos numerables.
En oposición a las matemáticas continuas, que se encargan del estudio de conceptos como la continuidad y el cambio continuo, la matemáticas discretas estudian estructuras cuyos elementos pueden contarse uno por uno separadamente. Es decir, los procesos en matemáticas discretas son contables, como por ejemplo, los números enteros, grafos y sentencias de lógica.1
Mientras que el cálculo infinitesimal está fundado en los números reales que no son numerables, la matemática discreta es la base de todo lo relacionado con los números naturales o conjuntos numerables.
Son fundamentales para la ciencia de la computación, porque sólo son computables las funciones de conjuntos numerables.
La clave en matemáticas discretas es que no es posible manejar las ideas de proximidad o límite y suavidad en las curvas, como se puede en el cálculo. Por ejemplo, en matemáticas discretas una incógnita puede ser 2 ó 3, pero nunca se aproximará a 3 por la izquierda con 2.9, 2.99, 2.999, etc. Las gráficas en matemáticas discretas vienen dadas por un conjunto finito de puntos que se pueden contar por separado; es decir, sus variables son discretas o digitales, mientras que las gráficas en cálculo son trazos continuos de rectas o curvas; es decir, sus variables son continuas o analógicas.
2.-La matemática discreta es la parte de las matemáticas que estudia objetos discretos. Definir el concepto discreto sin entrar en demasiadas formalidades no es sencillo pero podemos apelar a ciertos ejemplos matemáticos conocidos y contraponerlo al concepto de continuo que es la idea central del curso de Bases de Matemáticas. Lo discreto es lo finito o lo que, si no es finito, presenta el aspecto de los números naturales, objetos bien separados entre sí; lo continuo es lo no finito, lo infinitesimalmente próximo, como los números reales, y de ahí el concepto de límite y las ideas que de dicho concepto se derivan.
La matemática discreta surge como una disciplina que unifica diversas áreas tradicionales de las Matemáticas (combinatoria, probabilidad, geometría de polígonos, aritmética, grafos,...), como consecuencia de, entre otras cosas, su interés en la informática y las telecomunicaciones: la información se manipula y almacena en los ordenadores en forma discreta (palabras formadas por ceros y unos), se necesita contar objetos (unidades de memorias, unidades de tiempo), se precisa estudiar relaciones entre conjuntos finitos (búsquedas en bases de datos), es necesario analizar procesos que incluyan un número finito de pasos (algoritmos).
3.-Parte de la matemática que estudia los objetos Discretos (distintos o no conectados)
Son usadas en donde los objetos son contados, cuando las relaciones entre conjuntos finitos.
son estudiados y cuando los procesos que involucran un numero finito de pasos son analizados.
Definición propia
Las Matemáticas Discretas es una area de las matematicas encargadas de el estudio de los conjuntos discretos: finitos o infinitos numerables. Las matemáticas discretas estudian estructuras cuyos elementos pueden contarse uno por uno separadamente.Lo discreto es lo finito o lo que, si no es finito, presenta el aspecto de los números naturales, objetos bien separados entre sí, lo continuo es lo no finito, lo infinitesimalmente próximo, como los números reales, y de ahí el concepto de límite y las ideas que de dicho concepto se derivan, son usadas en donde los objetos son contados
La clave en matemáticas discretas es que no es posible manejar las ideas de proximidad o límite y suavidad en las curvas, como se puede en el cálculo. Por ejemplo, en matemáticas discretas una incógnita puede ser 2 ó 3, pero nunca se aproximará a 3 por la izquierda con 2.9, 2.99, 2.999, etc. Las gráficas en matemáticas discretas vienen dadas por un conjunto finito de puntos que se pueden contar por separado; es decir, sus variables son discretas o digitales, mientras que las gráficas en cálculo son trazos continuos de rectas o curvas; es decir, sus variables son continuas o analógicas.